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Role of quantum confinement and hyperfine splitting in lithium-doped ZnO nanocrystals
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The role of quantum confinement on the electronic properties of Li interstitial impurities in ZnO nanocrys-
tals was examined using a real-space pseudopotential-density-functional method. The Li impurity was found to
be partially ionized resulting in a significant charge transfer around the impurity site. To calculate the hyperfine
interaction for this system using pseudopotentials, we modified Van de Walle and Blochl’s method to include
explicitly the off-site contribution of the Li impurity wave function. Our modifications dramatically enhanced
the agreement between the calculated and the measured isotropic hyperfine splitting constants. Our analysis
with an effective-mass model demonstrates that the partial ionization of the impurity atom plays an important
role both in the binding energy and in the shape of its wave function. Comparison between calculations using
the local-density approximation (LDA) with LDA+U indicates that the local Coulomb correlation does not
play a significant role in altering the impurity electronic states of interstitial Li-doped ZnO nanocrystals.
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I. INTRODUCTION

The electronic states of shallow impurities or dopants in
semiconductor nanocrystals are strongly affected by the size
of the nanocrystal.? Since doping changes the electronic
structure significantly, a detailed knowledge of the defect
electronic states is crucial in understanding the properties of
the doped nanocrystals. There has been much effort to un-
derstand the physics of doped semiconductor nanocrystals
both from experiment and theory. However, progress on the
theoretical study of doped nanocrystals has been slow be-
cause of the large system size (typically hundreds if not thou-
sands of atoms) and the lack of symmetry.

Here we examine the role of quantum confinement in
ZnO nanocrystals. ZnO is a wide band-gap II-VI semicon-
ductor  with  prospects for optoelectronic  device
applications.>* Among many different types of doping ele-
ments for ZnO, Li has been known as one of the promising
candidates for p- or n-type dopants from several bulk ZnO
studies.>>~ Unlike doped II-VI semiconductors such as Mn-
doped CdSe,'° Li can be more easily introduced to form a
substitutional or interstitial defect in both bulk and nanocrys-
talline ZnO."!

Recently, several interesting features of Li impurities in
ZnO nanoparticles have been observed from the electron-
nuclear double resonance (ENDOR) spectra analysis by Or-
linskii and co-workers.'>!3 Most of the Li impurities were
found to form interstitial defects (Li;), resulting in weakly
bound impurity states. The measured isotropic hyperfine
splitting constants (HFS) of the Li; defects indicate a strong
quantum confinement effect on the impurity states while the
detailed physics remains problematic.

To understand the role of quantum confinement on the
electronic properties of Li; defects in ZnO nanocrystals, we
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employ a real-space first-principles pseudopotential-density-
functional method. We calculate the ionization potential and
the electron affinity of the undoped and Li;-doped nanocrys-
tals as a function of size. For doped systems, we examine the
Li; impurity state wave function to analyze its localization
behavior; we found that it was not localized on the Li atom.
We also predict the isotropic hyperfine splitting constant of
the Li donor to assess the role of quantum confinement. We
generalize Van de Walle and Blochl’s model'# for determin-
ing the isotropic hyperfine interaction using the pseudopoten-
tial method to cases where the defect electronic states are not
necessarily localized on the defect atom. We construct an
effective-mass theory with a charged quantum well that pro-
vides a simple model to explain our results. To assess the
role of correlation, we perform the same first-principles elec-
tronic structure calculations for several small ZnO nanocrys-
tals with the local-density approximation (LDA)+ U method
and examine the role of the screened Coulomb energy on the
impurity states.

II. COMPUTATIONAL DETAILS

Our calculations are based on a real-space
pseudopotential-density-functional theory method.!>!¢ We
calculate the ground-state electronic properties of undoped
and Li-doped ZnO nanocrystals using the LDA.!” The total
electronic energy of a system with electron density p(r) can
be written as

Eu[p(r)]=Tlp(r)]+ Eig p(r)] + Exlp(r)] + E, [p(r)],
(1)

where T is the kinetic energy, E;,, is the electron-ion inter-
action energy, Ey is the Hartree (electron-electron) energy,
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and E,. is the exchange-correlation energy. Minimizing the
total energy based on the pseudopotential scheme gives the
Kohn-Sham equation as follows:

V2
(— >t 2 VRR(e - x,) + Vil p(r)]+ ch[p(r)]> #(r)

= i(r), (2)

where VPP(r—r,) is a norm-conserving pseudopotential that
replaces the Coulomb potential of each ion at r,, Vy[p(r)] is
the Hartree potential, and V,[p(r)] is the exchange-
correlation potential. Atomic units (a.u.) were employed
throughout (A=e=m=1). Unless stated otherwise, we use the
norm-conserving pseudopotential based on Troullier and
Martins.'® The lithium pseudopotential was generated using
the reference configuration [He]2s'2p° with a radial cutoff of
2.4 a.u. for the s and p channels. The oxygen pseudopotential
was generated using the reference configuration [He]2s*2p*
with a radial cutoff of 1.3 a.u. for both s and p channels. For
LDA calculations, we considered the Zn 3d electrons as the
core states but included partial core correction for nonlinear
exchange correlation!® in the Zn pseudopotential construc-
tion. The reference configuration for this case is [Ar]3d'%4s?.
4p and 4d channels were also included for nonlocal compo-
nent. A radial cutoff of 2.6 a.u. was chosen for all the s, p,
and d channels. We tested our pseudopotentials for the ion-
ization energy of one of our small undoped nanocrystal
[(ZnO),7]. When compared with the results using zinc poten-
tial with 3d as valence, the difference between the two sets
of results was minimal (<0.05 eV).

We solve the Kohn-Sham equation self-consistently on a
real-space uniform grid with a higher order finite difference
expression for the kinetic-energy operator.'® The eigenvalue
problem was solved by damped Chebyshev polynomial fil-
tering subspace iteration.’? The method distinguishes itself
from the conventional diagonalization methods by avoiding
computation of explicit eigenvectors except at the first self-
consistent-field iteration, which speeds up the computation
typically by an order of magnitude over standard
diagonalization-based approaches.?’ A solution to the Kohn-
Sham equation is obtained when the residual norm of the
self-consistent potential is less than 107* Ry.

To model the ZnO nanocrystals, we consider spherical
fragments of wurtzite structured ZnO crystal. We used the
measured lattice constants of bulk wurtzite ZnO crystal: a
=3.249 A, ¢=5204 A, and c¢/a=1.602.2' The surface of
each nanocrystal was passivated with fictitious hydrogenlike
capping atoms.?”> The capping atoms were designed to re-
move the surface states near the quasiparticle gap by com-
pensating dangling bonds at the surface. For each doped
nanocrystal, we placed one Li atom at the octahedral site that
was nearest to the center of the nanocrystal. The structures
were kept fixed in our calculations. For small nanocrystals
[(ZnO),, and (ZnO),;], we checked that the change in the
donor binding energy and the impurity HFS was less than
3% after structural relaxation.

The grid spacing for the finite difference scheme was
carefully examined for convergence. We used a uniform grid
spacing of 0.3 a.u.=0.016 nm. The nanocrystal of interest
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FIG. 1. Size dependence of (a) ionization energy (), electron
affinity (4,), and (b) quasiparticle gap (E,) of undoped ZnO nano-
crystals. Plots with empty symbols are the results from LDA+U
calculations. Solid lines in (b) are the least-squares fits to power-law
functions: 4.3D714+2.0 (LDA) and 4.2D~'3+3.0 (LDA+U).

was placed in a spherical domain. Outside of this domain,
the wave function vanishes. The domain size was chosen
such that there is a vacuum space of at least 0.4 nm between
the outermost atom and the domain wall.

III. RESULTS
A. Electronic structure of Li;-doped ZnO nanocrystals

Unlike the plane-wave methods with supercells, a real-
space formalism allows us to calculate the ionization poten-
tial and the electron affinity of a charged, isolated system in
a straightforward manner from the total-energy differences
between two systems with a different number of electrons,
i.e., no compensating background need to be implemented.'®
Using this method, we first investigate the ionization poten-
tial (1,) and the electron affinity (A,) of the undoped ZnO
nanocrystals with varying sizes. The subscript p refers to a
pure undoped nanocrystal. By taking the difference /,-A,,
we obtain the quasiparticle gap (E,) of the undoped nano-
crystals, which is the energy needed to promote an electron
from the highest occupied electron level to the lowest unoc-
cupied level, assuming no interaction between the promoted
electron and the residual hole that it creates.

The calculated results are shown in Fig. 1. With increas-
ing nanocrystal size, we found that the ionization potential
decreased in magnitude and the electron affinity increased.
The quasiparticle gap decreases with increasing size. These
trends are consistent with the previous results for semicon-
ductor nanocrystals.>>2” Our calculated gap scales as ~D~14
with respect to the size of the nanocrystal D. The magnitude
of the scaling power is notably less than what is predicted
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from an effective-mass theory (E g~D‘2) (Ref. 28); however,
semiconductor nanocrystals exhibit similar softness in the
scaling of the energy gap.>~?’

We also show our results using LDA+U in Fig. 1. The Zn
pseudopotential for LDA+ U calculations is generated with
the 3d electrons treated as valence, and the reference elec-
tronic configuration is [Ar]3d'%4s? with 4p as an extra non-
local component using the same radial cutoff as the LDA
pseudopotential. We calculated the Hubbard U potential us-
ing first principles. The methods for calculating U for small
system with inefficient screening is elaborated in our previ-
ous work.? Our calculated U was 6.5 eV for the smallest
nanocrystal. Since the size dependence of U was weak in this
size regime,?’ we applied this U value for all of our LDA
+U calculations. There is a noticeable difference between
LDA+U and LDA results for the ionization potential. In
comparison with LDA, LDA+ U gives about 1 eV larger ion-
ization potential. As a result, the gap obtained by LDA+U
was also larger than the LDA gap by ~1 eV. This can be
attributed to the stronger impact of the Zn 3d level on the
highest occupied states of the nanocrystal than on its lowest
unoccupied state. The wave-function projection of the Zn 3d
orbital onto the highest occupied energy level and the lowest
unoccupied level of the undoped nanocrystals (shown in
Table 1) illustrates the significance of this impact.

Electron binding energy is one of the key aspects that
characterize the electronic properties of impurities in semi-
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FIG. 2. Size dependence of (a) ionization energy of Li-doped
ZnO nanocrystals (I,), electron affinity of undoped ZnO nanocrys-
tals (A,), and (b) the donor-electron binding energy of Li-doped
ZnO nanocrystals (Eg). Solid line in (b) is from our effective-mass
model centered with a uniformly distributed charge. Dotted line is
the least-squares fit to a power-law function 1.7D'7+0.6. Empty
symbols are from LDA+ U calculations.
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TABLE I. Wave-function projections to the zinc d level of the
highest occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO) for different sizes of nanocrys-
tals. The projections were calculated in neutral nanocrystals.

(Zn0),; (ZnO)sg (Zn0O) 4, (ZnO)g;
HOMO 0.56 0.56 0.57 0.53
LUMO 0.02 0.07 0.03 0.09

conductors. For an n-type semiconductor, the electron bind-
ing energy provides a measure of the energy barrier to acti-
vate the electron carriers. In recent experimental studies,'>!3
Li; defects in small ZnO nanoparticles have been labeled as
shallow donors based on the partially ionized shape of the
defect wave functions. However, the role of quantum con-
finement on the Li; level in small ZnO nanocrystals has yet
to be addressed. The Li; defect introduces a partially occu-
pied impurity level within the energy gap of ZnO nanocrys-
tal. The electron binding energy Ep of this donor level can be
calculated from the ionization energy (I;) and the electron
affinity (A,) of a doped system and an undoped system,
respectively:>

EB=Id_Ap’ (3)

where the subscript d refers to a doped ZnO nanocrystal. The
calculated results are shown in Fig. 2. Clearly, the extrinsic
ionization potential does not change as much with the size of
a nanocrystal as the intrinsic electron affinity does. The result
depicts the same picture of the pinning of an impurity level
with quantum confinement observed for several other
systems, %2420 j e, the impurity level does not show a sig-

FIG. 3. (Color) Spin-density isosurface plot of the Li interstitial
impurity wave function in a ZnO nanocrystal. Li atom (green
sphere) is located at the octahedral site of wurtzite structured
(Zn0O)g; nanocrystal. Zinc and oxygen atoms are depicted as yellow
and red spheres, respectively. Small white spheres at the surface
represent the capping hydrogen atoms. The green isosurface indi-
cates electron density of the Li donor. The isosurface corresponds to
10% of the maximum value.
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FIG. 4. (a) Spherically averaged impurity wave functions for different sizes of Li interstitial doped ZnO nanocrystals. For clarity, the
wave-function profiles were averaged over a uniform radial grid of 0.06 nm. [(b)—(d)] Solid lines show the radial-wave functions from our
effective-mass model. Dashed lines are from a hydrogenlike effective-mass model. Solid dots are the same spherically averaged impurity
wave functions from (a). Downward arrows indicate where the surface of each nanocrystal resides.

nificant change compared to the other electronic states and is
effectively pinned to the vacuum level. In addition, the elec-
tron binding energy shows a rapid increase for smaller nano-
crystals. For nanocrystals with size that is less than a nano-
meter, the electron binding energy exceeds 2 eV. This
indicates that, for a small Li;-doped ZnO nanocrystal, the
defect electronic state no longer behaves as a shallow level.
From Fig. 2, the corrected energy of Zn 3d level by LDA
+U does not significantly affect the impurity level and its
binding energy. Such a trivial enhancement by LDA+U on
the Li; impurities in ZnO can be explained by its negligible
role of the local Coulomb interaction that resides lower in
the occupied states with much more contribution from the
Zn 3d level.

B. Partial ionization of the Li impurity states

Recent experimental work!? confirmed that the Li donor
electron in a ZnO nanocrystal interacts with a large number
(approximately 20) of its neighboring atoms. In contrast, the
defect wave functions of phosphorus substitutional defect in
Si nanocrystals were sharply localized at the impurity atom
site.?>2630 The nature of Li; defects in ZnO nanocrystals
should be very different from that of P in Si nanocrystals.

In Fig. 3, we plotted an isosurface of the electron density
of the defect wave function for (ZnO)g;LiH,,s. The defect

wave function was not localized on the Li atom, and was
distributed on its neighbors. This is consistent with the ex-
perimental observation that the donor interacts with a large
number of surrounding atoms.!? Figure 4(a) shows the defect
wave functions for different sizes of ZnO nanocrystals. The
wave functions were spherically averaged to illustrate the
decay from the Li atom. We smooth the wave functions by
averaging them within a radial grid of 0.06 nm. From the
figure, the partially ionized feature of the Li; donors can be
seen from the maximum located on the neighboring sites
rather than the impurity site. The figure also illustrates a
strong size effect on the impurity wave function. As the size
increases, the defect wave function becomes more spatially
extended. Our result is consistent with the binding energy of
Li; donors in ZnO being close to zero in the bulk limit.!” The
delocalized feature of the defect wave function can also be
found in Li;-doped Si nanocrystals.?!

As the donor electron becomes significantly delocalized
from the Li atom, the nanocrystal will compensate the posi-
tive charge of the Li ion by transferring electrons toward the
impurity atom site. To illustrate this, we calculated the atom-
site-projected charge densities for both pure and doped nano-
crystals, and examined the difference. The projected charge
density for each atom site was estimated within the covalent
radius of each atom type. The difference in charge density
between doped and undoped (ZnO),,H;, for each atom site
is depicted in Fig. 5.
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FIG. 5. Charge transfer around the Li interstitial atom (gray
sphere) in (ZnO)4,—Li nanocrystal. Zinc and oxygen atoms are de-
picted as black and white spheres, respectively. If electrons are
transferred toward an atom, the atom is labeled with the (-) sign.
For all other atoms, electrons are transferred out of them. The
capping-layer atoms are not shown for clarity. The size of each
sphere denotes the magnitude of charge transfer.

There is a noticeable electron transfer toward the defect
atom site caused by the Li; defect. The nearest-neighbor
gains 0.04e—0.08¢ of charge per atom for Zn and
0.006e—0.02¢ of charge per atom for O. As a reaction to the
charge transfer toward the first neighbor of the impurity site,
each atom in the outer region slightly loses its charge by
=0.02¢ for Zn and =0.001e for O.

C. Isotropic hyperfine splitting constant

Orlinskii and co-workers!>!? have shown strong quantum
confinement effect on the defect wave function by measuring
the isotropic HFS of Li-doped ZnO nanocrystals. Since HFS
scales with the contact interaction between the electron and
the nuclei, it is a useful indicator of how quantum confine-
ment affects the electronic states under quantum
confinement, 2332

The isotropic hyperfine parameter a;,, of a wave function
can be written as

8
Aiso = ?ﬂ-gelgegnﬁns(o) . (4)

Here, g, is the electron g factor, g, is the g factor of the
nucleus, B, is the electronic Bohr magneton, S, is the
nuclear magneton, and s(0) is the spin density at the nucleus
site. Since the spin density of a Li-doped ZnO crystal is
equal to the amplitude square of the Li donor wave function
[5(0)=|4(0)|*], the isotropic HFS of Li donor can be calcu-
lated given the defect wave function.

PHYSICAL REVIEW B 78, 195324 (2008)

Since the pseudopotential approach implies a modification
of the wave function inside the core radius of each atom, the
approach is not appropriate for a detailed description of the
atom core region, including the isotropic HFS. Van de Walle
and Blochl'* suggested a scheme that enables us to estimate
the isotropic HFS from the pseudopotential calculations. In
this scheme, the all-electron impurity wave function |#) is
written as a linear combination of the corresponding pseudo-

wave function |17/> and pseudoatomic wave functions |¢;) of
atoms in the system:

|¢>=|‘Z>+EI (0 = | BN Dl ), (5)

where |¢) is the all-electron atomic wave function. The in-
dex [ runs over each and every atom site and the angular-
momentum component. Since the pseudowave functions are
constructed to be the same as the all-electron wave functions
outside the core radius of an atom, the wave-function value
at the impurity site can be written as

Y(0) = 1(0) + (b, 6,(0) - ¢,(0)], (6)

where the index s represents the s component of the impurity
atom. While the all-electron and pseudoatomic wave func-

tions [¢,(0)] and the pseudoimpurity wave function [(0)]
can be calculated from first principles, the integral (d,| {Z)
cannot be evaluated easily. However, one can derive an esti-
mate of the integral by expressing the pseudowave function
as an expansion of the pseudoatomic wave functions |171>

=3/ ¥|d)). The value of the pseudoimpurity wave func-
tion at the impurity atom can then be written as

0) = (| 1) B,(0) + 2 (B ) By(0). (7)
I#s
Van de Walle and Blochl!* postulated that, for a localized
defect state, only the defect atomic orbitals contribute to the
defect state wave function. With this postulate, only the term
with the defect s orbital remains nonzero and Eq. (7) be-
comes

90) = (4] 1)$,(0), (8)
or
Fp=12 ©)
#,(0)
Therefore, Eq. (6) can be simply written as
w0 =0 22, (10
#,(0)

Based on this simple expression, pseudopotential calcula-
tions for the HFS of P-doped Si nanocrystals are in excellent
agreement with the experimental observations.?>* However,
the Van de Walle-Blochl postulate that the defect atomic or-
bital solely contributes to the defect wave function will not
hold for partially ionized defects.??

If one does not neglect the off-site contributions to the
defect state from Eq. (7), Eq. (9) should be rewritten as
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<$S|<Z>=%[i5<o>—2 <<7s,|(b>$,<o>], (1)
3.0

s I#s

Putting this expression to Eq. (6) gives

#(0) = (0) + (& - 1)[?&((}) -> <$1|Jf>£z‘>l(0)].
$,(0)

n I#s

(12)

By defining Z=3,. (| #)F(0)/4(0), the equation is re-
duced to a simple expression:3*

w<0>=¢(0>{‘fﬁ;(1—m+ﬁ]. (13)
The impurity wave function consists of contributions from
the defect atom as well as all the other atoms in the system.
In fact, Van de Walle-Blochl method corresponds to one of
the limiting cases where =0 and therefore only the defect
on-site term is relevant, i.e., a defect state sharply localized

at the defect atom. For a nearly ionized impurity, (| &) is
small and therefore the dominant contribution to ¢40) is from
the neighboring atoms. For such a case, & should be close to
one. In general, & can be interpreted as a measure of the
off-site contribution to the HFS.

Although the evaluation of i requires the defect wave

function to be expressed in terms of a localized basis set | ),
direct evaluation of & can be avoided. ,ZIJ/(O)

=3, (| ) ,(0) should depend very weakly on the core
structure of the Li s state or the choice of the pseudopotential
within the core region. Based on this observation, & can be
calculated by performing two separate calculations with dif-
ferent types of pseudopotentials. Both calculations should
give the same physical result, and therefore the same HFS.
Using Eq. (12),

(0) + (u— D[(0) - Zg(0)]= ¢/ (0) + (u' - D[ (0)
- A0)], (14)

where ii=¢,(0)/ $,(0), and the prime indicates values calcu-
lated using a second pseudopotential. iz can then be solved
resulting in the following expression:

u—\ — u
(0) _

u—-u'

We used Troullier-Martins'® (TM) and Bachelet-Hamann-
Schliiter (BHS) (Refs. 35 and 36) pseudopotentials for Li to
calculate & for five of our small nanocrystals. The BHS Li
pseudopotential was generated using the same reference con-
figuration as the TM pseudopotential but the radial cutoff
was set to be 2.0 a.u. Our calculated i are shown in Table II.
The values were close to 0.8 and were insensitive to size.
This is consistent with our description of the Li donor state
in the previous section because the system is close to one of
the limiting cases where w is one and the impurity atom is
completely ionized.

A= (15)
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TABLE II. The off-impurity site contribution i of the hyperfine
interaction at the defect (Li;) site for different sizes of the doped
ZnO nanocrystals.

(Zn0)y; (ZnO)s4 (Zn0),5 (Zn0)g3 Avg.

M 0.82 0.84 0.84 0.83 0.83

Using #£=0.83 in Egs. (4) and (13), our calculated HFS
were plotted with experimental results from Orlinskii et al.'®
in Fig. 6. Results from Van de Walle-Blschl method (u=0)
was also plotted. Predictions based on Van de Walle-Blochl
method were off by almost two orders of magnitudes from
the experiment while our results can be extrapolated to ex-
perimental data smoothly where it scales as D3 for larger
nanocrystals (D >3 nm). The agreement between theory and
experiment would be dramatically improved if off-site con-
tributions are considered. HFS calculated using the LDA
+ U method are also plotted in Fig. 6, and we found that the
change in the Li HFS caused by the U potential is minimal.

The D3 dependence in the larger systems implies that
they can be modeled as an infinite-depth quantum well in an
effective-mass theory.”® However our calculated HFS size
dependence changes slowly from D~ for diameters larger
than ~3 nm to =D~ for smaller nanocrystals. The softer
size dependence in smaller systems cannot be understood
with such theory.

IV. DISCUSSION

To gain further insight of our results on Li,-doped ZnO
nanocrystals, we constructed a quantum-well model based on
effective-mass theory. Our model was based on a potential
well with radius R and depth V,, with a dielectric constant of
€. Instead of placing a point charge at the center to mimic the
Li ion, we placed a uniformly charged core with radius R’
and charge density p=3/(4mR'?). This was motivated by our

100 £ .
< 10E “x
N AN x
T LN
s L ta,
on E
[T
T o1
0.01 ‘

1 10
Diameter, D [nm]

FIG. 6. Log scale plot of the isotropic hyperfine splitting con-
stant of Li;-doped ZnO nanocrystals as a function of nanocrystal
size. Theoretical results with LDA are plotted as filled triangles
while results from LDA+ U are plotted as empty triangles. Experi-
mental data plotted as circles with error bars was taken from the
most recent ENDOR analysis by Orlinskii ef al. (Ref. 13). Theoret-
ical results from Van de Walle-Blochl method is plotted as X'’s.
Solid line depicts the scaling of ~D™3 for larger nanocrystals and
dashed line depicts the scaling of ~D™!® for smaller nanocrystals.
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FIG. 7. (Color online) An illustration of our effective-mass
model with a uniformly distributed charge in a quantum well and
the potential profile V(r) with the distance r from its center. Radius
and depth of the spherical potential well are R and V, respectively.
Positive charge at the center is distributed uniformly over a small
sphere of radius R’. The quantum well also has a dielectric constant
€.

calculation results which indicate that the impurity wave
function has a maximum that is not on the Li position but is
dispersed near the Li position.

Figure 7 illustrates our effective-mass model with a uni-
formly distributed charge as its core. One can construct a
model Hamiltonian H=(~V2/2m*)+V(r) (in atomic units)
for an electron with an effective mass m™ and a radial poten-
tial function V(r) with respect to the distance r from the
impurity site at the origin,

1 r\? .
- -13-{— -V, if 0<r=R’,
2€R R

V(r)=< —i—V()

if R"<r=R,
er
1 .
-— if r>R.
er

(16)

From Figs. 3 and 5, it is clear that the maximum of the
impurity wave function occurs around the nearest neighbor
of the impurity atom. Therefore, it is reasonable to set the
charged core radius as the distance between Li and its
nearest-neighbor atoms (R’=0.2 nm). For the effective
mass, we used the bulk ZnO value (m*=0.28).2! We applied
the generalized Penn’s model®”-® for the size dependence of
the dielectric constant:

PHYSICAL REVIEW B 78, 195324 (2008)

(17)

-1
fD)=1+—2——
1+(

@ )" ’
D
where ¢, is the static dielectric constant of bulk ZnO (g,
=8.65),>! and a and n will be used as fitting parameters.

By solving the Schrédinger equation HyAr)=EyA(r) nu-
merically, we obtained the ground-state wave function and
the ground-state eigenvalue which correspond to the impu-
rity wave function and the donor binding energy, respec-
tively. We adjusted «, n, and V) in our effective-mass model
to fit the binding energies and the shape of the impurity wave
functions to our pseudopotential-density-functional theory
results. We found a set of parameters: a=1.2 nm, n=3.5,
and Vy=1.1 eV to be the best fit. In Figs. 4(b)-4(d), ground-
state wave functions from the effective-mass model with dif-
ferent well radii are plotted with each of the corresponding
spherically averaged wave functions from the pseudopoten-
tial calculations. In Fig. 2, the size dependence of the binding
energy from the effective-mass model agrees well with the
pseudopotential work. The scaling of the donor binding en-
ergy in Fig. 2 (Ez~D™"7) can be understood as a mixture of
Coulomb interaction (~D~") and kinetic-energy contribution
(~D7?) owing to quantum confinement. This indicates that
the role of the Coulomb interaction between the donor elec-
tron and the impurity atom, and the role of spatial confine-
ment are equally important to the Li; donor’s behavior.

To clarify the role of the uniformly charged core in our
effective-mass model, we constructed a similar quantum well
with a point charge instead of a uniform charge distribution,
and performed the same analysis. Dashed lines in Figs.
4(b)-4(d) show the form of the impurity wave function for
the hydrogen-in-a-quantum-well effective-mass model. The
results were calculated with the set of parameters («
=1.3 nm and n=2.7) that best fit the binding energy from
the pseudopotential calculations. Its exponential trend near
the origin does not agree with the qualitative feature of the Li
donor wave function near the impurity site. This trend rein-
forces the importance of our modification of the model near
the impurity site that describes the partially ionized impuri-
ties under quantum confinement.

Our effective-mass model also helps us to understand the
softer size dependence of Li HFS for small nanocrystals
shown in Fig. 6. When a doped nanocrystal is sufficiently
large (R’ <R), the impurity nucleus will simply act like a
point charge. However, when the size of the nanocrystal is
comparable to the size of the ionic core in our effective-mass
model, the scaling behavior of the hyperfine interaction will
deviate from what is expected from a hydrogenlike effective-
mass model, resulting in a gradual change in the scaling of
the HFS. Our analysis discloses that, owing to the partially
ionized nature of the Li; defect in ZnO nanocrystals, the
defect state and its binding energy cannot be described by a
traditional hydrogenlike effective-mass theory.

V. CONCLUSIONS

We examined the role of quantum confinement on the
electronic properties of Li; impurities in ZnO nanocrystals
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with a real-space pseudopotential method. By calculating the
total energy of ZnO nanocrystals with different sizes, we
found that the ionization potential and the electron affinity of
undoped ZnO nanocrystals show a strong size dependence.
The scaling of the energy gap of ZnO nanocrystals were
similar to that of other semiconductor nanocrystals. For
doped systems, we found that the ionization potential of
Li;-doped ZnO nanocrystals is virtually independent of size.
The electron binding energy of Li donor shows a rapid in-
crease as the size decreases. We compared our calculation
results with LDA+U to examine the role of screened local
Coulomb energy. We found that LDA+ U properly corrects
the energy level of locally correlated states; however the en-
hancement becomes much less relevant for the impurity
states.

The Li; impurity state wave function was plotted and ana-
lyzed to study its localization behavior. We found that the Li
impurity partially ionizes and triggers a charge redistribution
around the impurity site. From our study of the size depen-
dence of Li HFS, we also found that the partial ionization
demands modifications in Van de Walle and Bléchl’s method
to calculate the hyperfine interactions using pseudopoten-
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tials. Our modification of the method can describe the off-
site contribution to the HFS, and our calculated HFS can be
extrapolated to the experimental data smoothly.

We also examined our calculation results with an
effective-mass model. The model was designed to simulate
the partially ionized impurity site with a small, uniformly
charged sphere at the center of a quantum well. With a
proper parametrization, the model successfully described the
shape of the impurity wave function as well as the size de-
pendence of the binding energy. Our analysis points out that
the partial ionization of the impurity plays an important role
in the electronic properties of Li;-doped ZnO nanocrystals.
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